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where r is the unit vector along the position vector OP.
The electric potential of a dipole is then given by

1 pi

2

4ne, T

(r>>a) (2.15)

Equation (2.15) is, as indicated, approximately true only for distances
large compared to the size of the dipole, so that higher order terms in
a/rare negligible. For a point dipole p at the origin, Eq. (2.15) is, however,

exact.

From Eq. (2.15), potential on the dipole axis (6 = 0, =) is given by

S}

V=+¢ 1
4rne, r

[

(2.16)

(Positive sign for 6 = 0, negative sign for 6 = n.) The potential in the

equatorial plane (8 =n/2) is zero.

The important contrasting features of electric potential of a dipole

from that due to a single charge are clear from Eqs. (2.8) and (2.15):

(i) The potential due to a dipole depends not just on r but also on the
angle between the position vector r and the dipole moment vector p.
(It is, however, axially symmetric about p. That is, if you rotate the
position vector r about p, keeping 6 fixed, the points corresponding
to P on the cone so generated will have the same potential as at P.)

(i) The electric dipole potential falls off, at large distance, as 1/ r2, not as
1/r, characteristic of the potential due to a single charge. (You can
refer to the Fig. 2.5 for graphs of 1/ r? versus r and 1/r versus r,

drawn there in another context.)

2.5 POTENTIAL DUE TO A SYSTEM OF CHARGES

Consider a system of charges q,, q,...., g, with position vectors r, r.

1° *92°

r_relative to some origin (Fig. 2.6). The potential V| at P due to the charge

q, is
1
V=
4re, np
where r|,, is the distance between g, and P.
Similarly, the potential V, at P due to g, and
V, due to g, are given by
__1 4 Vv, = 1 g;
4ne, Iyp 4rneg, Ty

vy

where r,, and r,, are the distances of P from
charges q, and g, respectively; and so on for the
potential due to other charges. By the
superposition principle, the potential Vat P due
to the total charge configuration is the algebraic
sum of the potentials due to the individual
charges

V=V, +V,+.. +V, (2.17)

O

P edq,

FIGURE 2.6 Potential at a point due to a
system of charges is the sum of potentials
due to individual charges.
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1 4 |, 9 d,
= | L2 4
4mne, [rlp Top Tp (2.18)

If we have a continuous charge distribution characterised by a charge
density p (r), we divide it, as before, into small volume elements each of
size AU and carrying a charge pAv. We then determine the potential due
to each volume element and sum (strictly speaking , integrate) over all
such contributions, and thus determine the potential due to the entire
distribution.

We have seen in Chapter 1 that for a uniformly charged spherical shell,
the electric field outside the shell is as if the entire charge is concentrated
at the centre. Thus, the potential outside the shell is given by

1 g
“Tmer 2R [2.19(a)]

where qis the total charge on the shell and Rits radius. The electric field
inside the shell is zero. This implies (Section 2.6) that potential is constant
inside the shell (as no work is done in moving a charge inside the shell),
and, therefore, equals its value at the surface, which is

__1 a
= Ine, R [2.19(b)]

Example 2.2 Two charges 3 x 10® C and -2 x 10® C are located
15 cm apart. At what point on the line joining the two charges is the
electric potential zero? Take the potential at infinity to be zero.

Solution Let us take the origin O at the location of the positive charge.
The line joining the two charges is taken to be the x-axis; the negative
charge is taken to be on the right side of the origin (Fig. 2.7).

0 P A
s X ®
3x10°C 15 cm -2x10*°C

FIGURE 2.7

Let P be the required point on the x-axis where the potential is zero.
If x is the x-coordinate of P, obviously x must be positive. (There is no
possibility of potentials due to the two charges adding up to zero for
Xx < 0.) If x lies between O and A, we have

1 [ 3x10°  2x107° _5
4ne,| xx102 (15-x)x1072 |

where x is in cm. That is,
3 2

x 15-x
which gives x = 9 cm.
If x lies on the extended line OA, the required condition is

3 2

x x-15

=0
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which gives

X =45 cm

Thus, electric potential is zero at 9 cm and 45 cm away from the
positive charge on the side of the negative charge. Note that the
formula for potential used in the calculation required choosing
potential to be zero at infinity.

Example 2.3 Figures 2.8 (a) and (b) show the field lines of a positive
and negative point charge respectively.

(a)
(b)

(c)
(d)

(e)

NS

@ ©

TN T

@ (b)

FIGURE 2.8

Give the signs of the potential difference V, - V;; Vi - V.

Give the sign of the potential energy difference of a small negative
charge between the points Q and P; A and B.

Give the sign of the work done by the field in moving a small
positive charge from Q to P.

Give the sign of the work done by the external agency in moving
a small negative charge from B to A.

Does the kinetic energy of a small negative charge increase or
decrease in going from B to A?

Solution

(a)

(b)

(c)

(d)

As V = % . Vp> V. Thus, (V,— V) is positive. Also Vy is less negative
than V, . Thus, V, >V, or (V,- V) is positive.

A small negative charge will be attracted towards positive charge.
The negative charge moves from higher potential energy to lower
potential energy. Therefore the sign of potential energy difference
of a small negative charge between Q and P is positive.
Similarly, (P.E.), > (P.E.); and hence sign of potential energy
differences is positive.

In moving a small positive charge from Q to P, work has to be
done by an external agency against the electric field. Therefore,
work done by the field is negative.

In moving a small negative charge from B to A work has to be
done by the external agency. It is positive.

Due to force of repulsion on the negative charge, velocity decreases
and hence the kinetic energy decreases in going from B to A.
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(b)

FIGURE 2.9 For a
single charge g
(a) equipotential

surfaces are
spherical surfaces
centred at the
charge, and
(b) electric field
lines are radial,
starting from the
charge if g > 0.
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2.6 EQUIPOTENTIAL SURFACES

An equipotential surface is a surface with a constant value of potential
at all points on the surface. For a single charge g, the potential is given
by Eq. (2.8):

v-_1 4
4re, 1

This shows that Vis a constant if r is constant. Thus, equipotential
surfaces of a single point charge are concentric spherical surfaces centred
at the charge.

Now the electric field lines for a single charge g are radial lines starting
from or ending at the charge, depending on whether q s positive or negative.
Clearly, the electric field at every point is normal to the equipotential surface
passing through that point. This is true in general: for any charge
configuration, equipotential surface through a point is normal to the
electric field at that point. The proof of this statement is simple.

If the field were not normal to the equipotential surface, it would
have non-zero component along the surface. To move a unit test charge
against the direction of the component of the field, work would have to
be done. But this is in contradiction to the definition of an equipotential
surface: there is no potential difference between any two points on the
surface and no work is required to move a test charge on the surface.
The electric field must, therefore, be normal to the equipotential surface
at every point. Equipotential surfaces offer an alternative visual picture
in addition to the picture of electric field lines around a charge
configuration.

FIGURE 2.10 Equipotential surfaces for a uniform electric field.
For a uniform electric field E, say, along the x -axis, the equipotential

surfaces are planes normal to the x -axis, i.e., planes parallel to the y-z
plane (Fig. 2.10). Equipotential surfaces for (a) a dipole and (b) two
identical positive charges are shown in Fig. 2.11.

(b)

FIGURE 2.11 Some equipotential surfaces for (a) a dipole,
(b) two identical positive charges.
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2.6.1 Relation between field and potential

Consider two closely spaced equipotential surfaces A and B (Fig. 2.12)
with potential values Vand V + 6V, where 6V is the change in Vin the
direction of the electric field E. Let P be a point on the
surface B. 6l is the perpendicular distance of the
surface A from P. Imagine that a unit positive charge
is moved along this perpendicular from the surface B
to surface A against the electric field. The work done
in this process is |E| L

This work equals the potential difference
V-V

Thus,

IEISl=V—-(V+6V)=-6V

ie. 1EI=-%Y (2.20)
ol
Equipotentials
Since 6V is negative, 6V = — [6V|. we can rewrite FIGURE 2.12 From the
Eq (2.20) as potential to the field.
gV _ 1%V 2.21)
ol ol '

We thus arrive at two important conclusions concerning the relation

between electric field and potential:

(i) Electric field is in the direction in which the potential decreases
Steepest.

(i) Its magnitude is given by the change in the magnitude of potential
per unit displacement normal to the equipotential surface at the point.

2.7 POTENTIAL ENERGY OF A SYSTEM OF CHARGES

Consider first the simple case of two charges g,and g, with position vector
r, and r, relative to some origin. Let us calculate the work done
(externally) in building up this configuration. This means that we consider
the charges q, and g, initially at infinity and determine the work done by
an external agency to bring the charges to the given locations. Suppose,
first the charge q, is brought from infinity to the point r,. There is no
external field against which work needs to be done, so work done in
bringing g, from infinity to r, is zero. This charge produces a potential in
space given by

-l a
! 4rne, rip
where r, is the distance of a point P in space from the location of g,.
From the definition of potential, work done in bringing charge g, from
infinity to the point r, is g, times the potential at r, due to g,:
1 qq,

work doneon q,= ——————
2 4me,
0 12
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r where r,, is the distance between points 1 and 2.
Since electrostatic force is conservative, this work gets
stored in the form of potential energy of the system. Thus,

a4 the potential energy of a system of two charges g, and g, is
FIGURE 2.13 Potential energy of a U= 1 qq,
system of charges g, and g, is T Ame. 1 (2.22)
directly proportional to the product . _0 2 . .
of charges and inversely to the Obviously, if g, was brought first to its present location and
distance between them. q, brought later, the potential energy Uwould be the same.

More generally, the potential energy expression,
Eq. (2.22), is unaltered whatever way the charges are brought to the specified
locations, because of path-independence of work for electrostatic force.

Equation (2.22) is true for any sign of g,and gq,. If q,q, > O, potential
energy is positive. This is as expected, since for like charges (q,q, > 0),
electrostatic force is repulsive and a positive amount of work is needed to
be done against this force to bring the charges from infinity to a finite
distance apart. For unlike charges (q, q, < 0), the electrostatic force is
attractive. In that case, a positive amount of work is needed against this
force to take the charges from the given location to infinity. In other words,
a negative amount of work is needed for the reverse path (from infinity to
the present locations), so the potential energy is negative.

Equation (2.22) is easily generalised for a system of any number of
point charges. Let us calculate the potential energy of a system of three
charges q,, q, and g, located at r, r,, r,, respectively. To bring q, first
from infinity to r;, no work is required. Next we bring g, from infinity to
r,. As before, work done in this step is

1 qq,

Vi(r,) = )
q, Vi (r,) 4dre, 1, (2.23)
The charges q, and g, produce a potential, which at any point P is
given by
1
Vig = —(i+ q_zj (2.24)
4Amey \Np  Top
Work done next in bringing g, from infinity to the pointr,is g, times
V, ,atrg
1
Tag qsV) (1) = (qlqg + qzqs] (2.25)
4 4aney \ 15 Tas
G The total work done in assembling the charges
I at the given locations is obtained by adding the work
Nz done in different steps [Eq. (2.23) and Eq. (2.25)],
& 1 (49 , 99 %4
_ 142 113 213
FIGURE 2.14 Potential energy of a U= 4rne, ( Mo " Na " Tys j (2.26)

system of three charges is given by
Eq. (2.26), with the notation given
in the figure.

Again, because of the conservative nature of the
electrostatic force (or equivalently, the path
independence of work done), the final expression for
U, Eq. (2.26), is independent of the manner in which
62 the configuration is assembled. The potential energy
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is characteristic of the present state of configuration, and not the way
the state is achieved.

Example 2.4 Four charges are arranged at the corners of a square
ABCD of side d, as shown in Fig. 2.15.(a) Find the work required to
put together this arrangement. (b) A charge g, is brought to the centre

E of the square, the four charges being held fixed at its corners. How
much extra work is needed to do this?

+4d -4
AO OB

o d

DO O C
B FIGURE 2.15 4

Solution

(a) Since the work done depends on the final arrangement of the
charges, and not on how they are put together, we calculate work
needed for one way of putting the charges at A, B, C and D. Suppose,
first the charge +q is brought to A, and then the charges —q, +q, and

—q are brought to B, C and D, respectively. The total work needed can
be calculated in steps:

(i) Work needed to bring charge +q to A when no charge is present
elsewhere: this is zero.

(ii) Work needed to bring —q to B when +q is at A. This is given by
(charge at B) X (electrostatic potential at B due to charge +q at A)

=] —q X q = — q2
4ne,d 4ne,d

(iii) Work needed to bring charge +q to C when +q is at A and —q is at

B. This is given by (charge at C) X (potential at C due to charges
at A and B)

q —q
=+ +
d [ Ame,d2  Ame,d J

— _qz 1- L
C4me,d\ 2
(iv) Work needed to bring —g to D when +q at A,—q at B, and +q at C.

This is given by (charge at D) X (potential at D due to charges at A,
B and C)

+q -q q
=- + +
a (4n80d dme,d2  4meyd J

= -4’ z_i
4me,d J2

¥° ¢ A1dNVXH
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Add the work done in steps (i), (ii), (iii) and (iv). The total work
required is

sl (-3 (-3

- 41r£0d(4 \/5)
The work done depends only on the arrangement of the charges, and
not how they are assembled. By definition, this is the total
electrostatic energy of the charges.

(Students may try calculating same work/energy by taking charges
in any other order they desire and convince themselves that the energy
will remain the same.)

(b) The extra work necessary to bring a charge g, to the point E when
the four charges are at A, B, C and D is g, X (electrostatic potential at
E due to the charges at A, B, C and D). The electrostatic potential at
E is clearly zero since potential due to A and C is cancelled by that
due to B and D. Hence, no work is required to bring any charge to
point E.

2.8 PoOTENTIAL ENERGY IN AN EXTERNAL FIELD
2.8.1 Potential energy of a single charge

In Section 2.7, the source of the electric field was specified — the charges
and their locations - and the potential energy of the system of those charges
was determined. In this section, we ask a related but a distinct question.
What is the potential energy of a charge g in a given field? This question
was, in fact, the starting point that led us to the notion of the electrostatic
potential (Sections 2.1 and 2.2). But here we address this question again
to clarify in what way it is different from the discussion in Section 2.7.
The main difference is that we are now concerned with the potential
energy of a charge (or charges) in an external field. The external field E is
not produced by the given charge(s) whose potential energy we wish to
calculate. E is produced by sources external to the given charge(s).The
external sources may be known, but often they are unknown or
unspecified; what is specified is the electric field E or the electrostatic
potential V due to the external sources. We assume that the charge g
does not significantly affect the sources producing the external field. This
is true if g is very small, or the external sources are held fixed by other
unspecified forces. Even if q is finite, its influence on the external sources
may still be ignored in the situation when very strong sources far away
at infinity produce a finite field E in the region of interest. Note again that
we are interested in determining the potential energy of a given charge g
(and later, a system of charges) in the external field; we are not interested
in the potential energy of the sources producing the external electric field.
The external electric field E and the corresponding external potential
Vmay vary from point to point. By definition, V at a point P is the work
done in bringing a unit positive charge from infinity to the point P.
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(We continue to take potential at infinity to be zero.) Thus, work done in
bringing a charge g from infinity to the point P in the external field is qV.
This work is stored in the form of potential energy of q. If the point P has
position vector r relative to some origin, we can write:

Potential energy of g at r in an external field

=qVI(r) (2.27)
where V(r) is the external potential at the point r.

Thus, if an electron with charge g= e = 1.6x10"'° C is accelerated by
a potential difference of AV = 1 volt, it would gain energy of gAV = 1.6 X
10'°J. This unit of energy is defined as 1 electron volt or 1eV, i.e.,
1 eV=1.6 x 107'°J. The units based on eV are most commonly used in
atomic, nuclear and particle physics, (1 keV = 10%V = 1.6 x 107'%J, 1 MeV
= 10%V = 1.6 x 10'%J, 1 GeV = 10%V = 1.6 x 10 '%J and 1 TeV = 10"%eV
= 1.6 x 107J). [This has already been defined on Page 117, XI Physics
Part I, Table 6.1.]

2.8.2 Potential energy of a system of two charges in an
external field

Next, we ask: what is the potential energy of a system of two charges q,
and g, located at r and r,, respectively, in an external field? First, we
calculate the work done in bringing the charge g, from infinity to r,.
Work done in this step is g, V(r,), using Eq. (2.27). Next, we consider the
work done in bringing g, to r,. In this step, work is done not only against
the external field E but also against the field due to gq,.

Work done on g, against the external field

=q, V(r,)

Work done on g, against the field due to g,

- 99
4re n,
where r,,is the distance between g, and g,. We have made use of Egs.
(2.27) and (2.22). By the superposition principle for fields, we add up
the work done on g, against the two fields (E and that due to g,):
Work done in bringing g, tor,

=q,V(r)+——— (2.28)

Thus,
Potential energy of the system
= the total work done in assembling the configuration

4,9,

=q,V(r)+q,V(r,)+
q,V(r)+q,V(r,) dne,r,

(2.29)

Example 2.5

(a) Determine the electrostatic potential energy of a system consisting
of two charges 7 uC and -2 pC (and with no external field) placed
at (-9 cm, 0, 0) and (9 cm, O, 0) respectively.

(b) How much work is required to separate the two charges infinitely
away from each other?
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(c) Suppose that the same system of charges is now placed in an
external electric field E = A (1/r%); A=9x 10° NC m? What would
the electrostatic energy of the configuration be?

Solution

7 x(=2)x 10712

(a) U=L%=9x1o9 xS = 0.7 J.

4Te,

0.18

(b) W=U,-U, =0-U=0-(-0.7) =0.7 J.

(c) The mutual interaction energy of the two charges remains
unchanged. In addition, there is the energy of interaction of the
two charges with the external electric field. We find,

qV(r)+qV(r)=A

ExAmPLE 2.5

W

7ncC N -2uC
0.09m 0.09m

and the net electrostatic energy is

7uC -2uC

V() +qV(n)+—hd _ 4 +A ~0.7J

4ATET 0.09m 0.09m
=70-20-0.7=49.3J

2.8.3 Potential energy of a dipole in an external field

Consider a dipole with charges g, = +q and g, = —q placed in a uniform
electric field E, as shown in Fig. 2.16.

»
»

\4

»

FIGURE 2.16 Potential energy of a
dipole in a uniform external field.

As seen in the last chapter, in a uniform electric field,
the dipole experiences no net force; but experiences a
torque 1 given by

T=pXxE (2.30)
which will tend to rotate it (unless p is parallel or
antiparallel to E). Suppose an external torque T_ is
applied in such a manner that it just neutralises this
torque and rotates it in the plane of paper from angle 6,
to angle 6, at an infinitesimal angular speed and without
angular acceleration. The amount of work done by the
external torque will be given by

W ="t (0)d6 = [" pEsin6do
6o 60

= pE(cos 6, —cos ) (2.31)

This work is stored as the potential energy of the system. We can
then associate potential energy U(0) with an inclination 6 of the dipole.
Similar to other potential energies, there is a freedom in choosing the
angle where the potential energy U is taken to be zero. A natural choice
is to take 6,=m/2. (An explanation for it is provided towards the end of
discussion.) We can then write,

66

U(e) = pE (cosg - cosej = pEcosgp =-p.E (2.32)
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